# Identifying civilians killed by police with distantly supervised entity-event extraction

Katherine A. Keith, Abram Handler, Michael Pinkham, Cara Magliozzi, Joshua McDuffie, and Brendan O'Connor

#### **EMNLP 2017**



College of Information and Computer Science University of Massachusetts Amherst

# Killings by police in the U.S.

Aug 9, 2014

July 17, 2014

July 5, 2016

July 6, 2016









| Eric Garner | New York,<br>NY |
|-------------|-----------------|
| Michael     | Ferguson,       |
| Brown       | MO              |
| Alton       | Baton Rouge,    |
| Sterling    | LA              |
| Philando    | Falcon          |
| Castile     | Heights, MN     |

• Fatality Statistics?

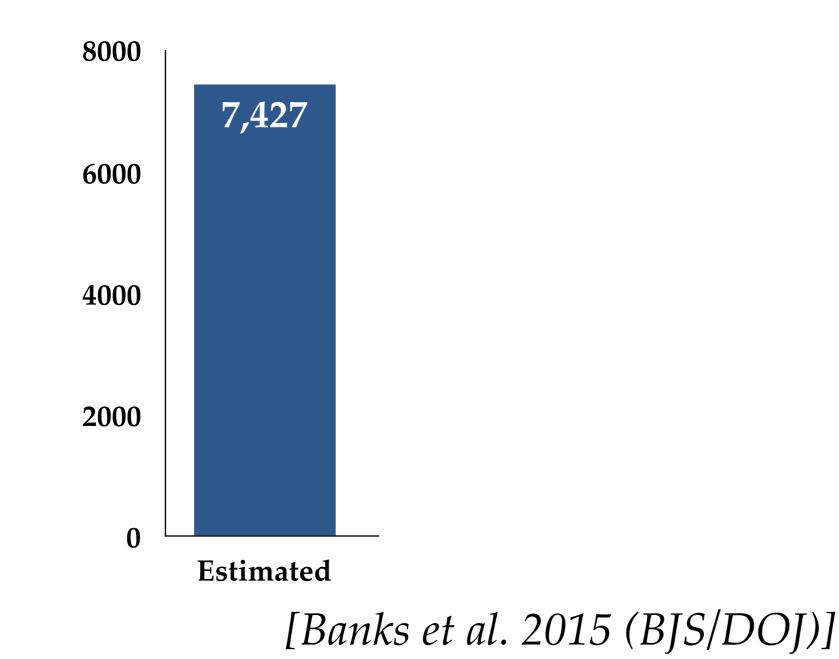
- Fatality Statistics?
- Racial disparity/discrimination?

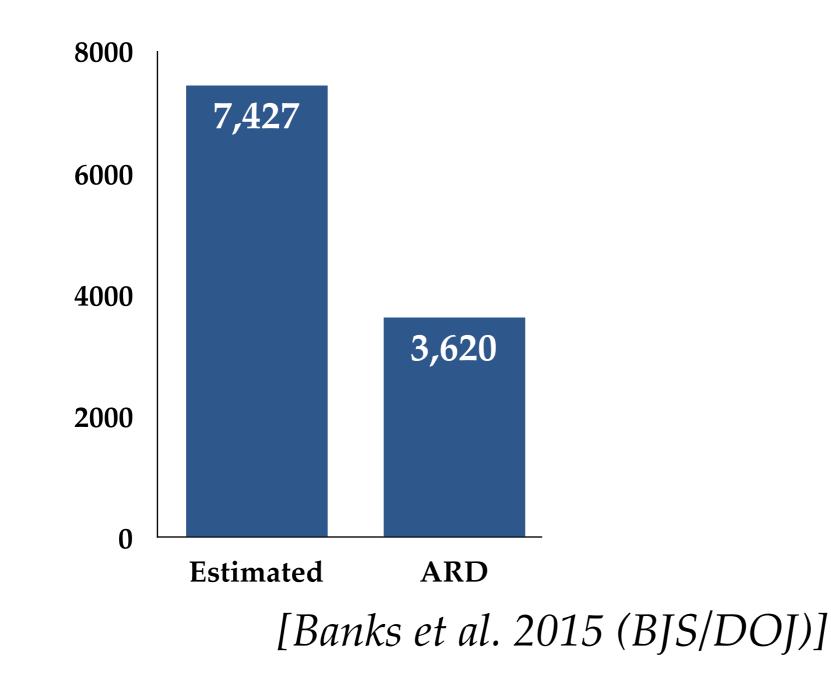
- Fatality Statistics?
- Racial disparity/discrimination?
- Most effective police departments/policing methods?

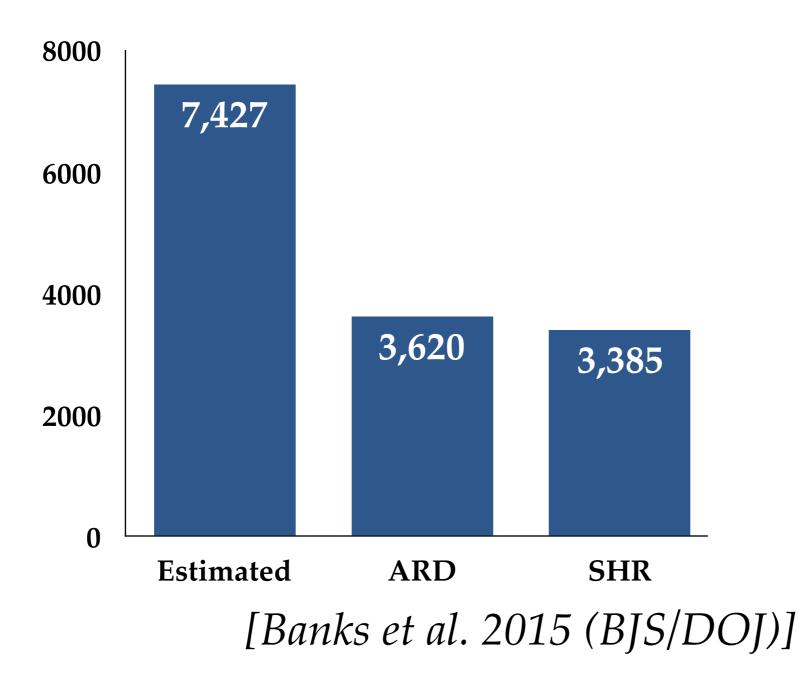
- Fatality Statistics?
- Racial disparity/discrimination?
- Most effective police departments/policing methods?

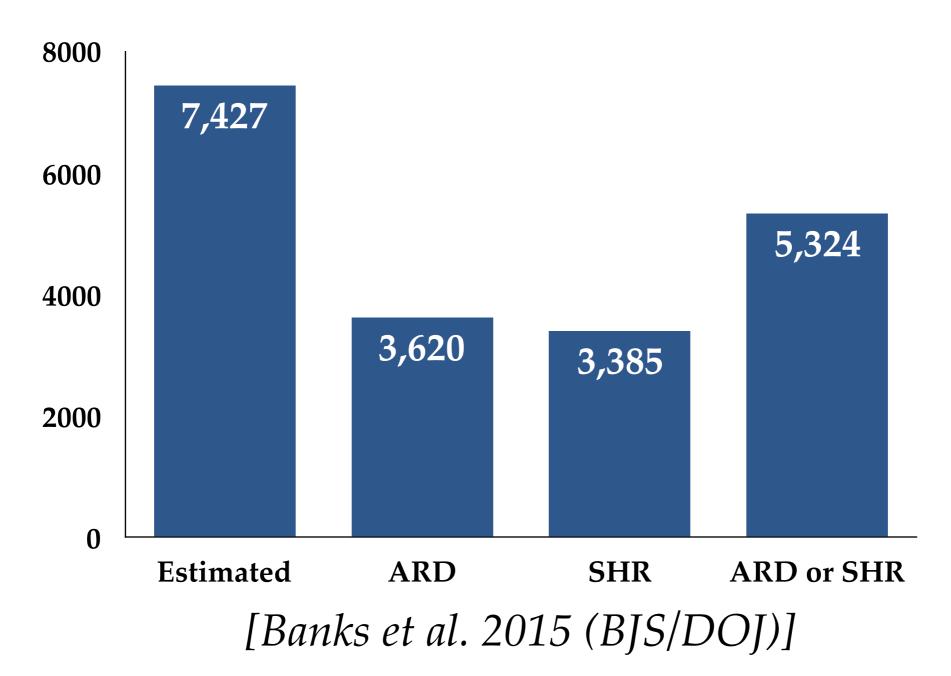
### DATA!

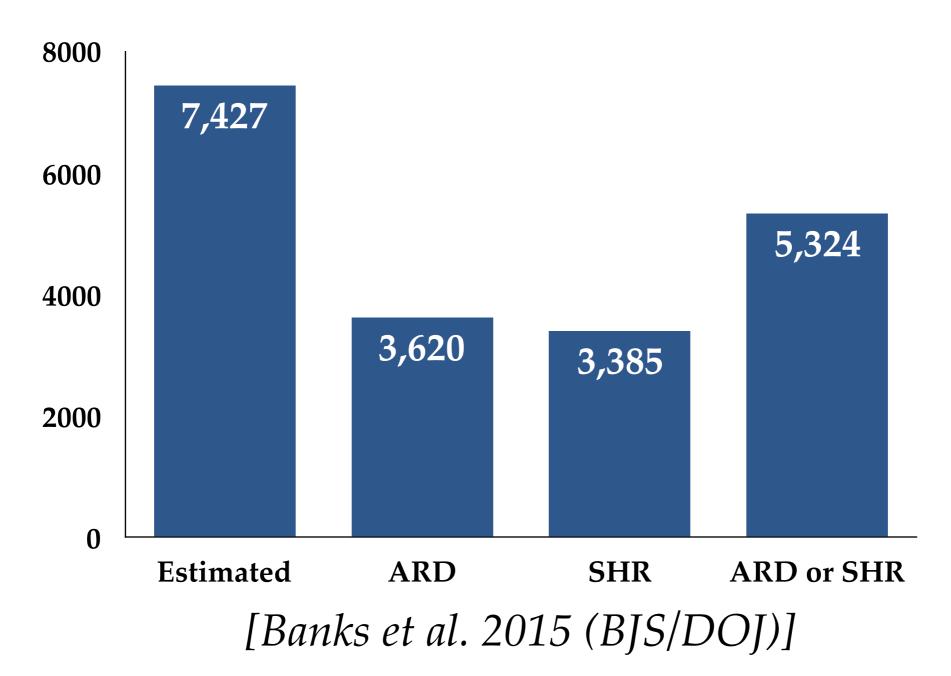
[Banks et al. 2015 (BJS/DOJ)]



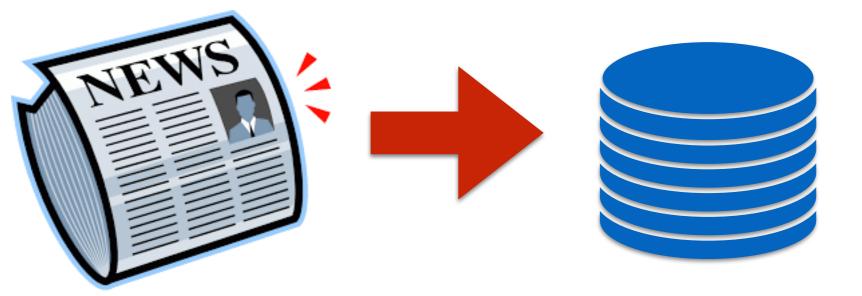






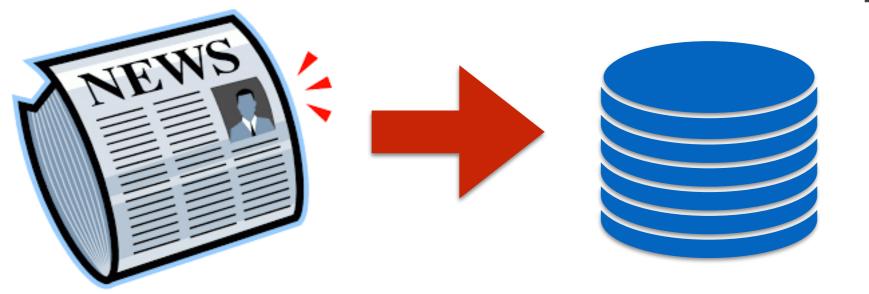


## Alternative data: media reports



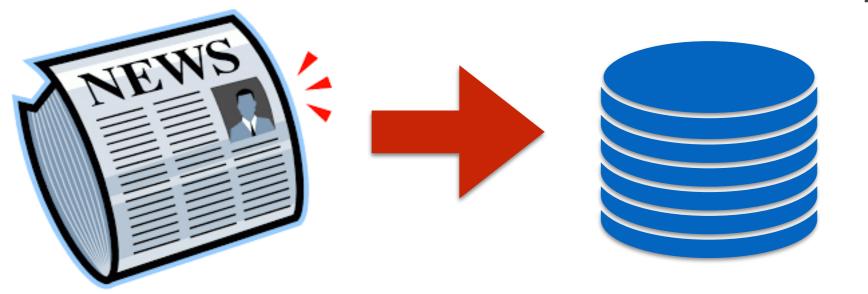
• Populate an **entity-event database** by manually reading news articles

## Alternative data: media reports



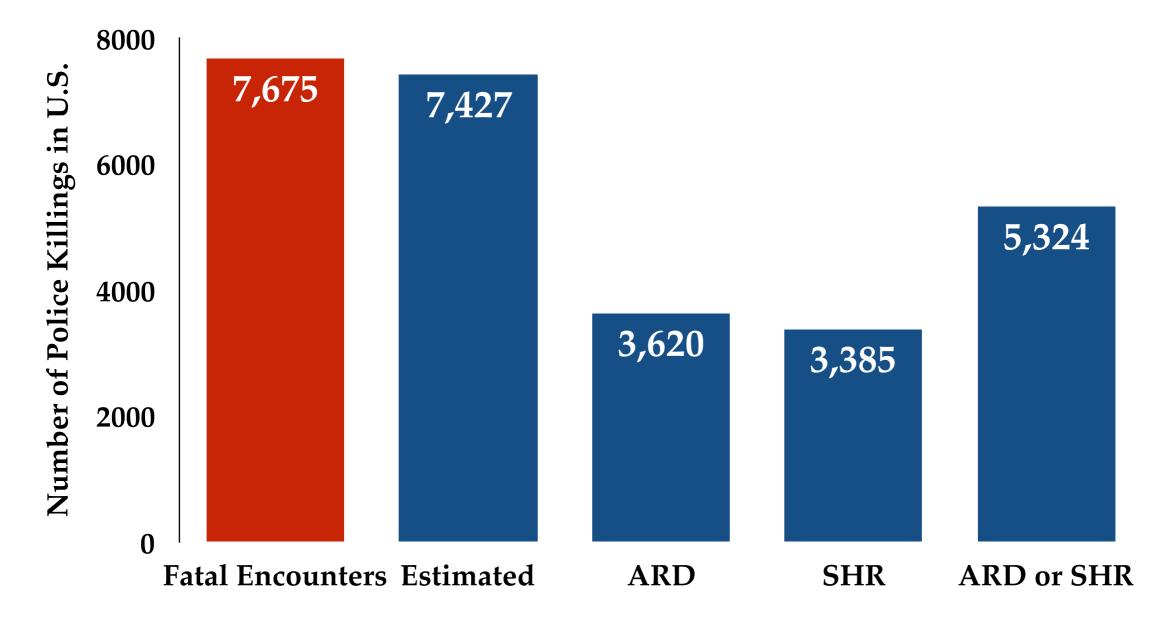
- Populate an **entity-event database** by manually reading news articles
- FatalEncounters.org, KilledByPolice.net, The Guardian, Washington Post...

## Alternative data: media reports



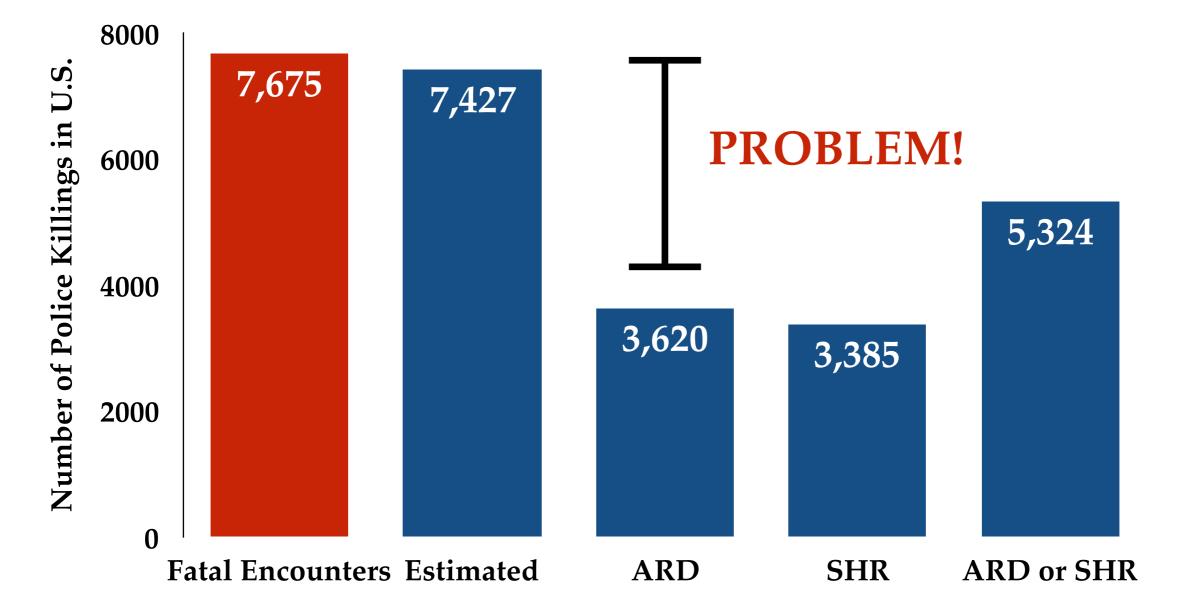
- Populate an **entity-event database** by manually reading news articles
- FatalEncounters.org, KilledByPolice.net, The Guardian, Washington Post...
- Fatal Encounters volunteers have read >2 million articles

#### Number of U.S. police killings 2003-2009, 2011



[Banks et al. 2015 (BJS/DOJ)]

#### Number of U.S. police killings 2003-2009, 2011



[Banks et al. 2015 (BJS/DOJ)]

### **Motivation:**

Public data and government accountability

### **Motivation:**

Public data and government accountability

### **Problems with existing approaches:**

- 1. Manual updates are expensive
- 2. Continuous updates required

### **Motivation:**

Public data and government accountability

### **Problems with existing approaches:**

- 1. Manual updates are expensive
- 2. Continuous updates required

### Goal:

Automatically update a police fatality database





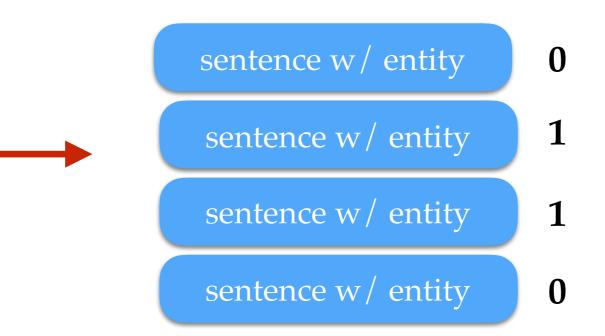
#### sentence w/ entity

sentence w/ entity

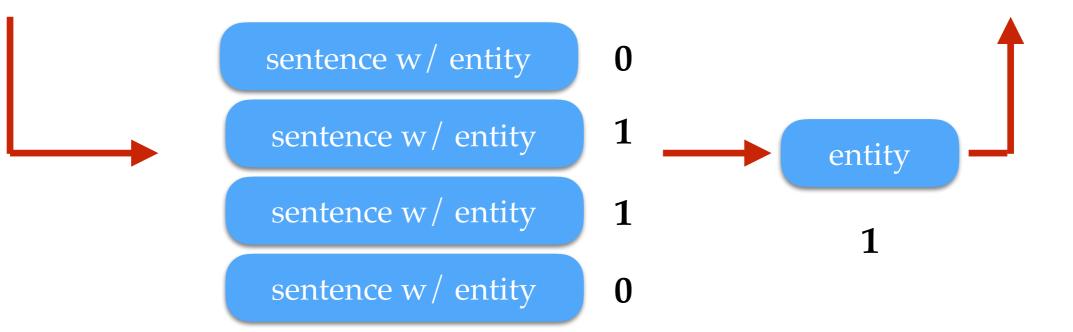
sentence w/ entity

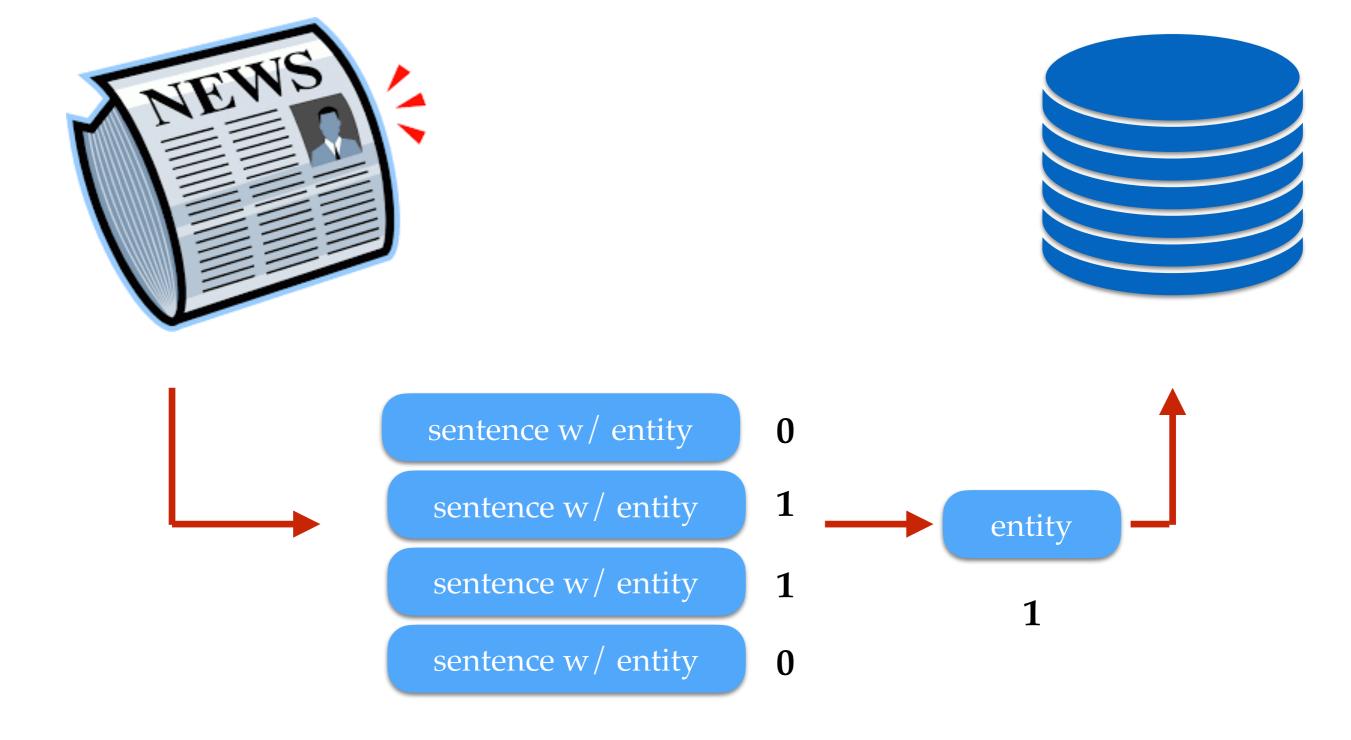
sentence w/ entity











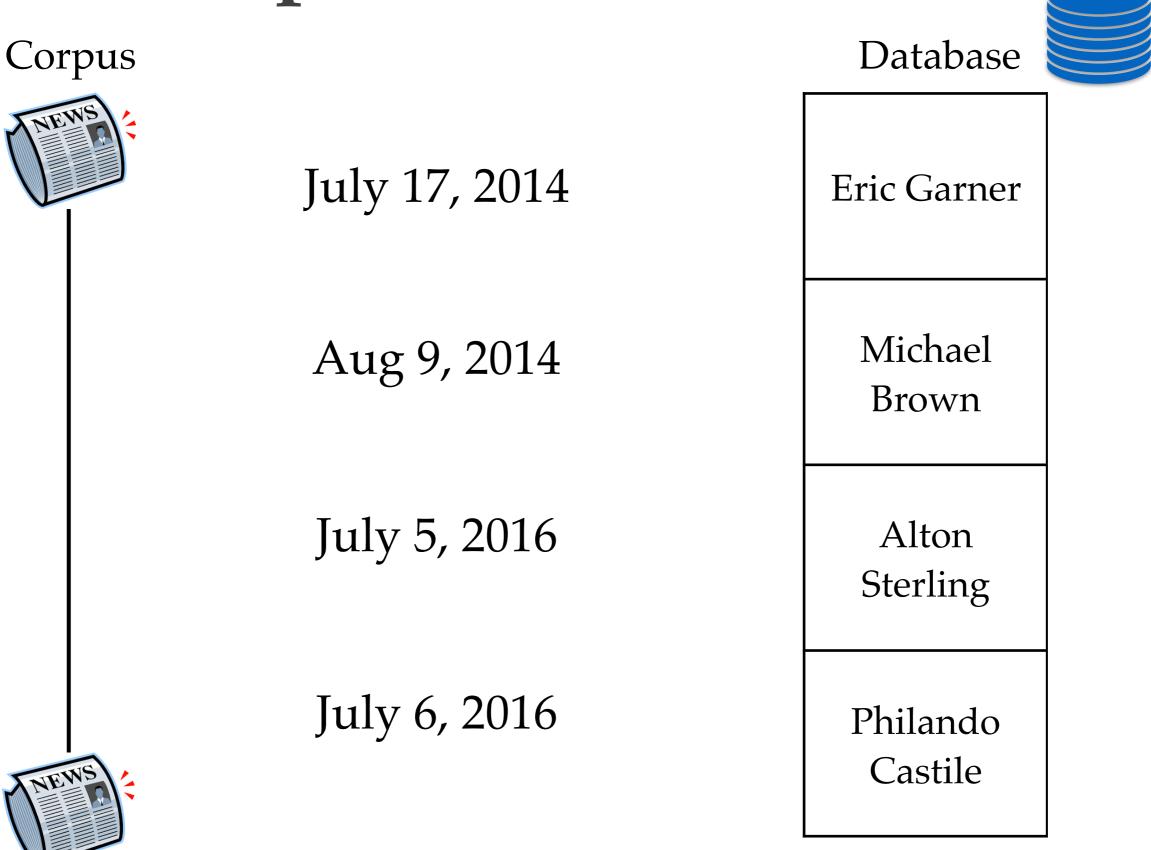
# Outline

- 1. Motivation and overview
- 2. Task and data
- 3. Model
- 4. Training
- 5. Evaluation
- 6. Conclusion

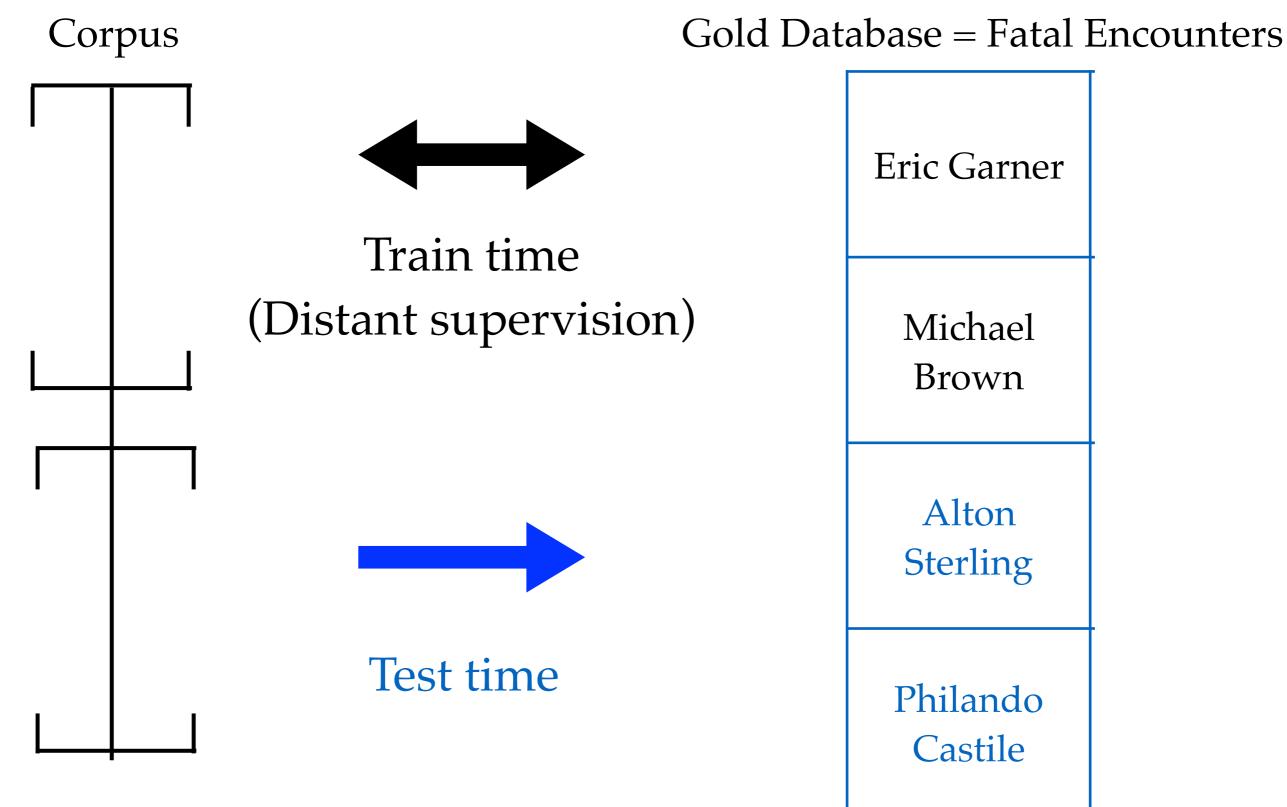
# **Example Dataset**

| Corpus |               | Database                               |
|--------|---------------|----------------------------------------|
| NEWS   | July 17, 2014 | Eric Garner New York,<br>NY            |
|        | Aug 9, 2014   | Michael Ferguson,<br>Brown MO          |
|        | July 5, 2016  | AltonBaton Rouge,SterlingLA            |
| NEWS   | July 6, 2016  | Philando Falcon<br>Castile Heights, MN |

# **Example Dataset**



# Task: Database update



# **Collecting data**



- Keyword-querying web scraper running throughout 2016
- Preprocessing: text extraction, deduplication, spaCy NER+parsing, name cleanups

| Knowledge base    | Historical             | Test                   |
|-------------------|------------------------|------------------------|
| FE incident dates | Jan 2000 –<br>Aug 2016 | Sep 2016 –<br>Dec 2016 |

| News dataset | Train                  | Test                   |
|--------------|------------------------|------------------------|
| doc. dates   | Jan 2016 –<br>Aug 2016 | Sep 2016 –<br>Dec 2016 |

| Knowledge base    | Historical             | Test                   |
|-------------------|------------------------|------------------------|
| FE incident dates | Jan 2000 –<br>Aug 2016 | Sep 2016 –<br>Dec 2016 |

| News dataset | Train                  | Test                   |
|--------------|------------------------|------------------------|
| doc. dates   | Jan 2016 –<br>Aug 2016 | Sep 2016 –<br>Dec 2016 |
| total docs.  | 793,010                | 317,345                |

| Knowledge base    | Historical             | Test                   |
|-------------------|------------------------|------------------------|
| FE incident dates | Jan 2000 –<br>Aug 2016 | Sep 2016 –<br>Dec 2016 |
| FE gold entities  | 17,219                 | 452                    |

| News dataset   | Train      | Test       |
|----------------|------------|------------|
| doc. dates     | Jan 2016 – | Sep 2016 - |
|                | Aug 2016   | Dec 2016   |
| total docs.    | 793,010    | 317,345    |
| total ments.   | 132,833    | 68,925     |
| pos. ments.    | 11,274     | 6,132      |
| total entities | 49,203     | 24,550     |
| pos. entities  | 916        | 258        |

| Knowledge base    | Historical             | Test                   |
|-------------------|------------------------|------------------------|
| FE incident dates | Jan 2000 –<br>Aug 2016 | Sep 2016 -<br>Dec 2016 |
| FE gold entities  | 17,219                 | 452                    |
| -                 |                        |                        |
| News dataset      | Train                  | Test                   |
| doc. dates        | Jan 2016 –             | Sep 2016 -             |
|                   | Aug 2016               | Dec 2016               |
| total docs.       | 793,010                | 317,345                |
| total ments.      | 132,833                | 68,925                 |
| pos. ments.       | 11,274                 | 6,132                  |
| total entities    | 49,203                 | 24,550                 |
| pos. entities     | 916                    | 258                    |
|                   |                        |                        |
|                   |                        | Č                      |
|                   |                        | 25                     |

Data upper bound: 258/452 = 57% recall

#### Outline

- 1. Motivation and overview
- 2. Task and data
- 3. Model
- 4. Training
- 5. Evaluation
- 6. Conclusion

Corpus



#### Test time

Corpus



#### Test time

#### Database

Alton Sterling

Philando Castile

Corpus

The Baton Rouge Police Department confirms that confirms **Alton Sterling**, 37, died during a shooting at the Triple S Food Mart

... the two officers involved in Tuesday's shooting of **Alton Sterling** ...

... Alton Sterling was a resident of Baton Rouge...

Corpus

The Baton Rouge Police Department confirms that confirms **Alton Sterling**, 37, died during a shooting at the Triple S Food Mart

... the two officers involved in Tuesday's shooting of **Alton Sterling** ...

... Alton Sterling was a resident of Baton Rouge...

(1) predict: describes police fatality?

> 0.4 0.8 0.01

#### **Test time** Corpus

(1) predict: describes police fatality?

0.4

0.8

Alton

Sterling

The Baton Rouge Police Department confirms that confirms **Alton Sterling**, 37, died during a shooting at the Triple S Food Mart

... the two officers involved in Tuesday's shooting of **Alton Sterling** ...

.. Alton Sterling was a resident of Baton Rouge...

0.01 (2) aggregate: add to database?

(1) Predict sentence-level event assertions(2) Aggregate entity-level predictions

(1) Predict sentence-level event assertions(2) Aggregate entity-level predictions

$$P(z_i = 1 | x_i) = \sigma(\theta^T f(x_i))$$

sentence text

(1) Predict sentence-level event assertions(2) Aggregate entity-level predictions

$$P(z_i = 1 | x_i) = \sigma(\theta^T f(x_i))$$

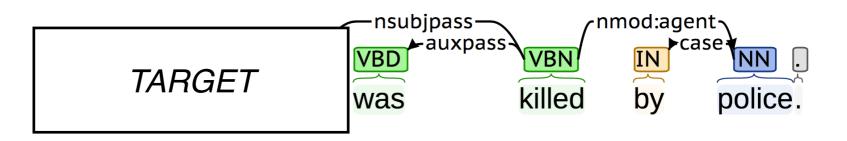
describes police killing event

sentence text e.g. logistic regression, convolutional neural network

# (1) Predict sentence-level event assertions(2) Aggregate entity-level predictions

### 1. Feature-engineered logistic regression

- Syntactic dependency paths
- N-grams
- POS tags



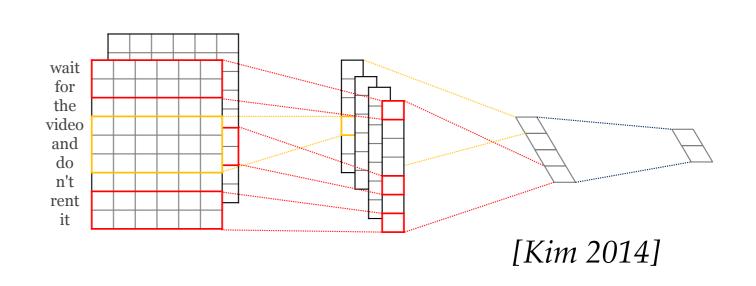
# (1) Predict sentence-level event assertions(2) Aggregate entity-level predictions

#### 1. Feature-engineered logistic regression

- Syntactic dependency paths
- N-grams
- POS tags

#### 2. Convolutional neural network

- [Kim 2014]
- Used in other event detection work [e.g. Nguyen and Grishman 2015]



nsubipass-

VBD

was

auxpass

VBN

killed

-nmod:agent·

IN

by

► cas

police

TARGET

(1) Predict sentence-level event assertions

#### (2) Aggregate **entity**-level predictions

p(z | x)

The Baton Rouge Police Department confirms that confirms Alton Sterling, 37, died during a shooting at the Triple S Food Mart

... the two officers involved in Tuesday 's shooting of Alton Sterling ...

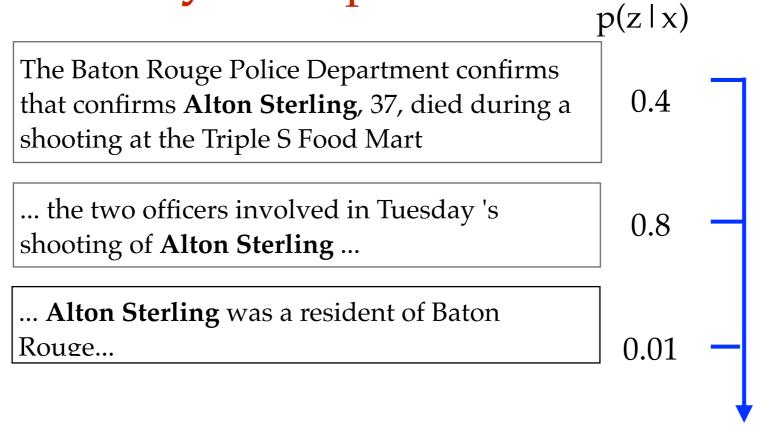
... Alton Sterling was a resident of Baton Rouge...

0.01

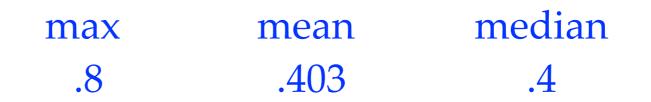


(1) Predict sentence-level event assertions

#### (2) Aggregate **entity**-level predictions

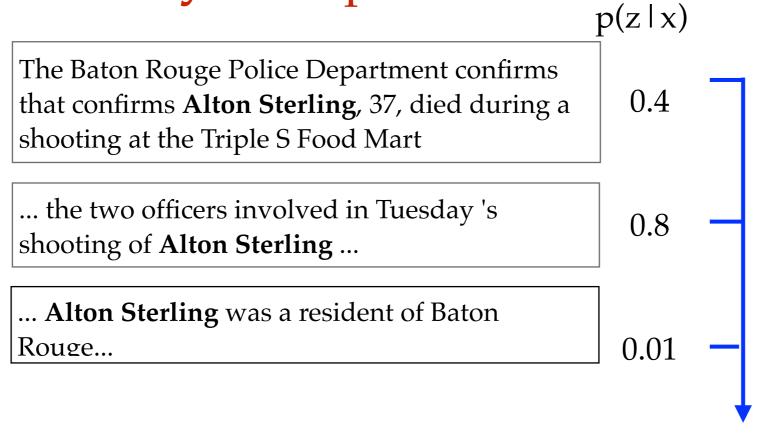






(1) Predict sentence-level event assertions

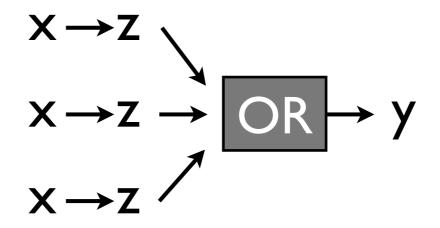
#### (2) Aggregate **entity**-level predictions



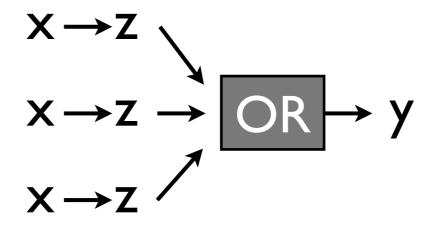




### Noisy-Or



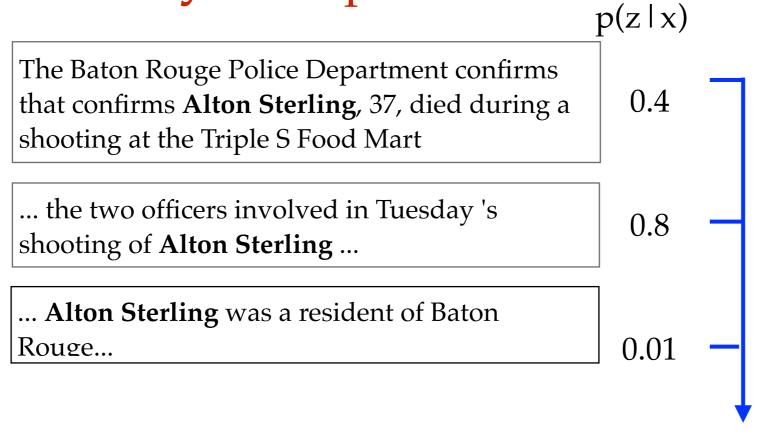
#### Noisy-Or



$$P(y_e = 1 | x_{\mathcal{M}(e)}) = 1 - \prod_{i \in \mathcal{M}(e)} (1 - P(z_i = 1 | x_i))$$
  
entity label  
set of  
sentences for  
given entity

(1) Predict sentence-level event assertions

#### (2) Aggregate **entity**-level predictions







#### Outline

- 1. Motivation and overview
- 2. Task and data
- 3. Model
- 4. Training
- 5. Evaluation
- 6. Conclusion

#### **Imputing training labels** Database Corpus Eric Garner Michael Brown Michael Brown was killed by a white police officer in Ferguson, Mo. Reporters interviewed the mother of Michael Brown last Sunday. Katy Perry reacted on Twitter to the most recent police killing.

#### **Imputing training labels** Corpus

Database

#### hand labeling is expensive —> distant supervision

**Michael Brown** was killed by a white police officer in Ferguson , Mo.

Reporters interviewed the mother of **Michael Brown** last Sunday.

**Katy Perry** reacted on Twitter to the most recent police killing.

Michael Brown

Eric Garner

### Imputing training labels

1. "Hard" labeling

2. "Soft" labeling

### Imputing training labels

1. "Hard" labeling

#### Distant Supervision Assumption [*Mintz et al.*, 2009]

2. "Soft" labeling

# (1)"Hard" labeling Corpus Database Eric Garner

**Michael Browp** was killed by a white police officer in Ferguson, Mo.

Positive

Reporters interviewed the mother of **Michael Brown** last Sunday.

**Katy Perry** reacted on Twitter to the most recent police killing.

Negative

Positive

## (1)"Hard" labeling Corpus Database

**Michael Browp** was killed by a white police officer in Ferguson, Mo.

Reporters interviewed the mother of **Michael Brown** last Sunday.

**Katy Perry** reacted on Twitter to the most recent police killing.

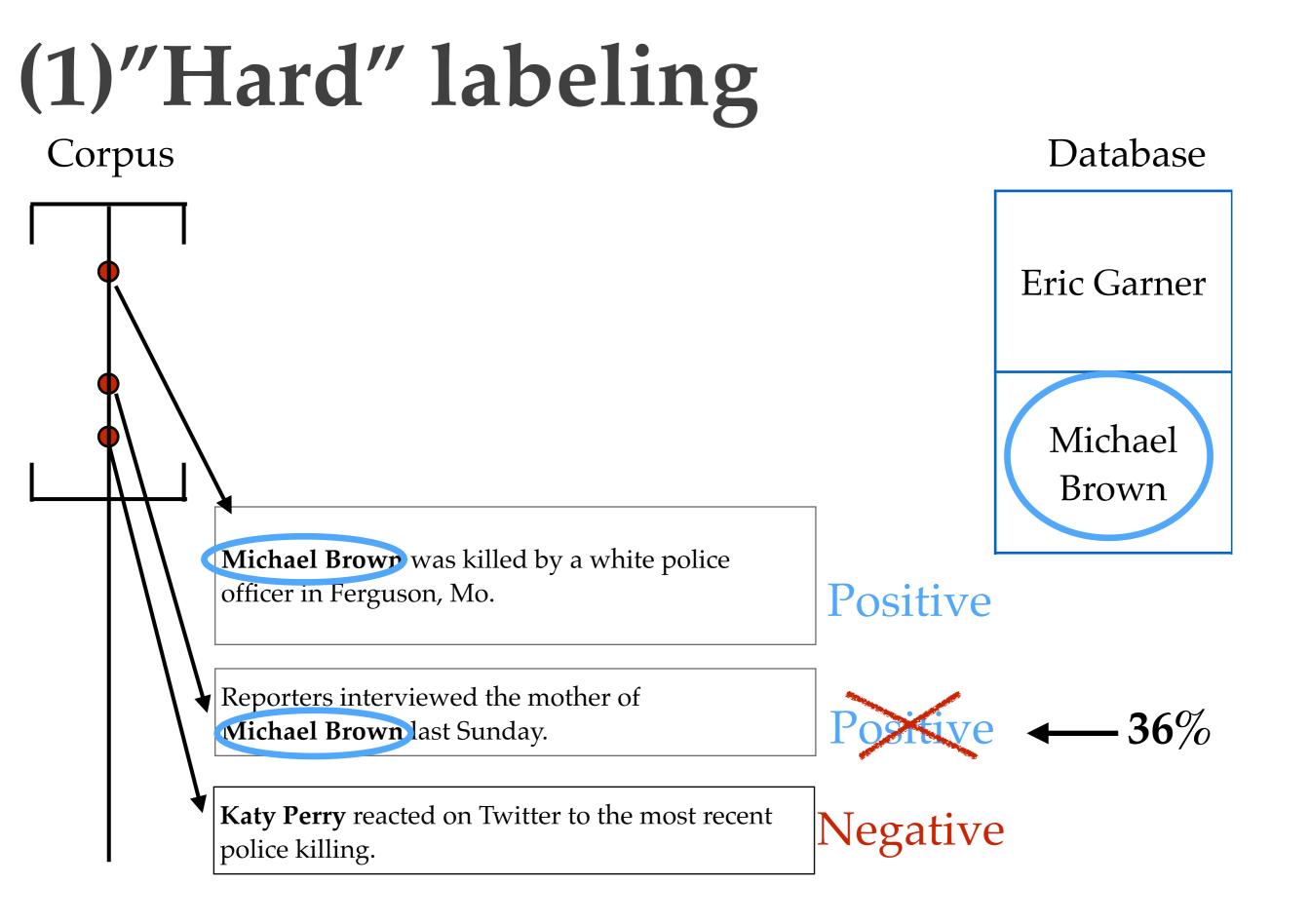
Positive

Michael

Brown



Negative



### Imputing training labels

1. "Hard" labeling

Distant Supervision Assumption [*Mintz et al.,* 2009]

2. "Soft" labeling

"At least one" assumption [Bunescu and Mooney 2007]

police killing.

Corpus

Database

Eric Garner Michael Brown Michael Browp was killed by a white police officer in Ferguson, Mo. Reporters interviewed the mother of ? Michael Brown last Sunday. Katy Perry reacted on Twitter to the most recent Negative

**EM Training** [Dempster et al. 1977]

**EM Training** [Dempster et al. 1977]

Initialize with hard distant labels

**EM Training** [Dempster et al. 1977]

Initialize with hard distant labels

**E-Step:** Marginal posterior probability for each  $z_i$ probability sentence i is a police fatality event  $P(z_i = 1, y_{e_i} = 1 | x_{\mathcal{M}(e_i)})$   $P(y_{e_i} = 1 | x_{\mathcal{M}(e_i)})$ entity label set of all sentences for the given entity

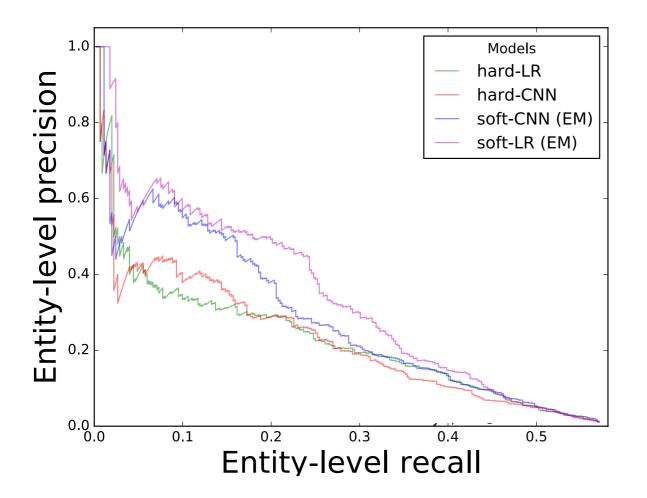
**EM Training** [Dempster et al. 1977]

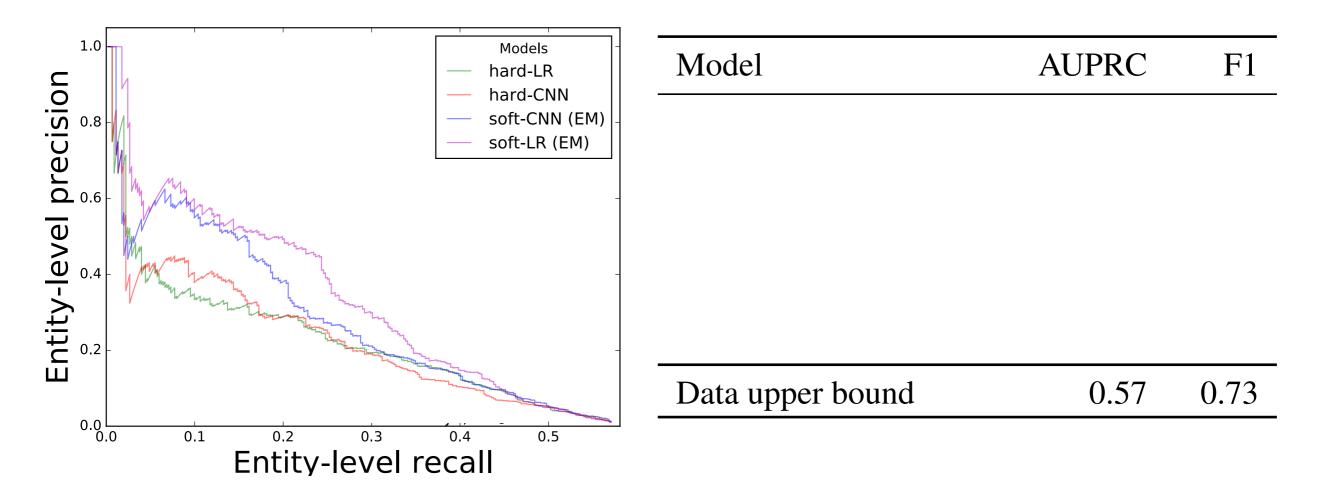
Initialize with hard distant labels

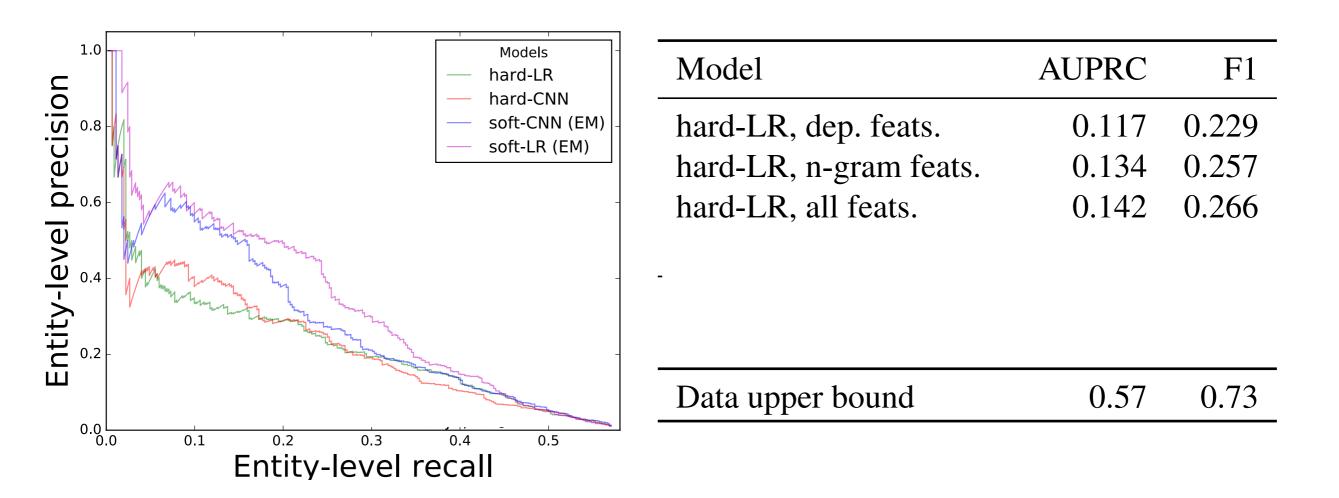
**E-Step:** Marginal posterior probability for each z<sub>i</sub> probability entence i is a  $q(z_i = 1) = \frac{P(z_i = 1, y_{e_i} = 1 | x_{\mathcal{M}(e_i)})}{P(y_{e_i} = 1 | x_{\mathcal{M}(e_i)})}$ sentence i is a police fatality event entity label set of all sentences M-Step: for the given entity  $\max_{ heta}\sum_{i}\sum_{z\in\{0,1\}}q(z_i=z)\log P_{ heta}(z_i=z\mid x_i).$ classifier parameters

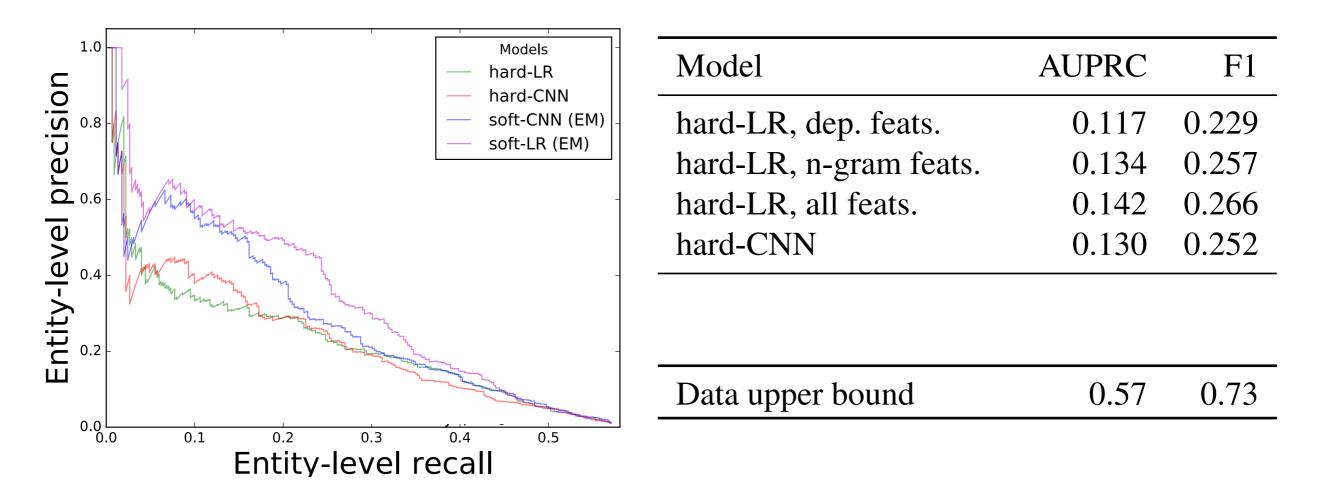
#### Outline

- 1. Motivation and overview
- 2. Task and data
- 3. Model
- 4. Training
- 5. Evaluation
- 6. Conclusion

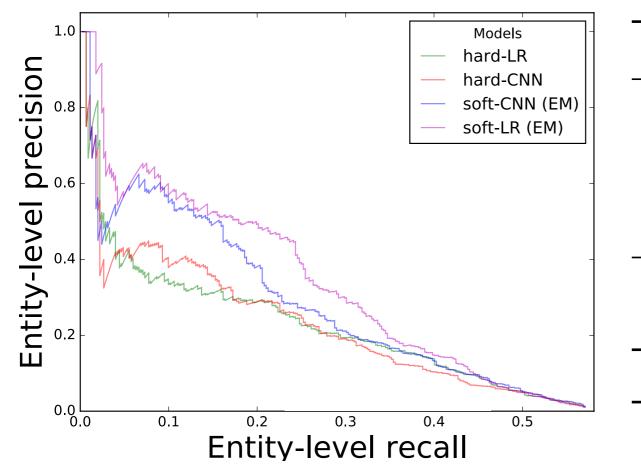








#### Model results



| Model                  | AUPRC | F1    |
|------------------------|-------|-------|
| hard-LR, dep. feats.   | 0.117 | 0.229 |
| hard-LR, n-gram feats. | 0.134 | 0.257 |
| hard-LR, all feats.    | 0.142 | 0.266 |
| hard-CNN               | 0.130 | 0.252 |
| soft-CNN (EM)          | 0.164 | 0.267 |
| soft-LR (EM)           | 0.193 | 0.316 |
| Data upper bound       | 0.57  | 0.73  |
|                        |       |       |

SEMAFOR (trained for FrameNet) [Das et al. 2014]

SEMAFOR (trained for FrameNet) [Das et al. 2014]

> RPI-JIE (trained for ACE) [Li and Ji 2014]

SEMAFOR (trained for FrameNet) [Das et al. 2014]

> RPI-JIE (trained for ACE) [Li and Ji 2014]

> > Used in gun violence database pipeline [Pavlick and Callison-Burch 2016]

|                                                        | Rule | Prec. | Recall | F1    |
|--------------------------------------------------------|------|-------|--------|-------|
| SEMAFOR<br>(trained for FrameNet)<br>[Das et al. 2014] | R1   | 0.011 | 0.436  | 0.022 |
| RPI-JIE<br>(trained for ACE)<br>[Li and Ji 2014]       | R1   | 0.016 | 0.447  | 0.030 |

R1: killing event

|                                                        | Rule     | Prec.          | Recall         | F1             |
|--------------------------------------------------------|----------|----------------|----------------|----------------|
| SEMAFOR<br>(trained for FrameNet)<br>[Das et al. 2014] | R1<br>R2 | 0.011<br>0.031 | 0.436<br>0.162 | 0.022<br>0.051 |
| RPI-JIE<br>(trained for ACE)<br>[Li and Ji 2014]       | R1<br>R2 | 0.016<br>0.044 | 0.447<br>0.327 | 0.030<br>0.078 |

R1: killing event R2: R1 and patient = entity

|                        | Rule | Prec. | Recall | F1           |
|------------------------|------|-------|--------|--------------|
| SEMAFOR                | R1   | 0.011 | 0.436  | 0.022        |
| (trained for FrameNet) | R2   | 0.031 | 0.162  | 0.051        |
| [Das et al. 2014]      | R3   | 0.098 | 0.009  | 0.016        |
| RPI-JIE                | R1   | 0.016 | 0.447  | 0.030        |
| (trained for ACE)      | R2   | 0.044 | 0.327  | 0.078        |
| [Li and Ji 2014]       | R3   | 0.172 | 0.168  | <b>0.170</b> |

R1: killing event R2: R1 and patient = entity R3: R2 and agent = police

|                        | Rule | Prec. | Recall | F1           |
|------------------------|------|-------|--------|--------------|
| SEMAFOR                | R1   | 0.011 | 0.436  | 0.022        |
| (trained for FrameNet) | R2   | 0.031 | 0.162  | 0.051        |
| [Das et al. 2014]      | R3   | 0.098 | 0.009  | 0.016        |
| RPI-JIE                | R1   | 0.016 | 0.447  | 0.030        |
| (trained for ACE)      | R2   | 0.044 | 0.327  | 0.078        |
| [Li and Ji 2014]       | R3   | 0.172 | 0.168  | <b>0.170</b> |
| soft-LR (EM)           |      |       |        | 0.316        |

R1: killing event R2: R1 and patient = entity R3: R2 and agent = police

# Top entities at test time

| rank | name                     | positive | analysis              |
|------|--------------------------|----------|-----------------------|
| 1    | Keith Scott              | true     |                       |
| 2    | <b>Terence Crutcher</b>  | true     |                       |
| 3    | Alfred Olango            | true     |                       |
| 4    | Deborah Danner           | true     |                       |
| 5    | Carnell Snell            | true     |                       |
| 6    | Kajuan Raye              | true     |                       |
| 7    | <b>Terrence Sterling</b> | true     |                       |
| 8    | Francisco Serna          | true     |                       |
| 9    | Sam DuBose               | false    | name mismatch         |
| 10   | Michael Vance            | true     |                       |
| 11   | Tyre King                | true     |                       |
| 12   | Joshua Beal              | true     |                       |
| 13   | Trayvon Martin           | false    | killed, not by police |
| 14   | Mark Duggan              | false    | non-US                |
| 15   | Kirk Figueroa            | true     |                       |
| 16   | Anis Amri                | false    | non-US                |
| 17   | Logan Clarke             | false    | shot not killed       |
| 18   | Craig McDougall          | false    | non-US                |
| 19   | Frank Clark              | true     |                       |
| 20   | Benjamin Marconi         | false    | name of officer       |

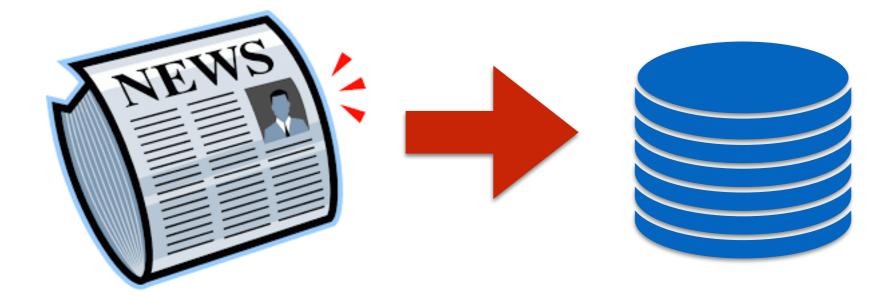
# Top entities at test time

| rank   | name             | positive | analysis              |
|--------|------------------|----------|-----------------------|
| 1      |                  |          |                       |
| 2      |                  |          |                       |
| 3      |                  |          |                       |
| 4      |                  |          |                       |
| 4<br>5 |                  |          |                       |
| 6      |                  |          |                       |
| 7      |                  |          |                       |
| 8      |                  |          |                       |
| 9      | Sam DuBose       | false    | name mismatch         |
| 10     |                  |          |                       |
| 11     |                  |          |                       |
| 12     |                  |          |                       |
| 13     | Trayvon Martin   | false    | killed, not by police |
| 14     | Mark Duggan      | false    | non-US                |
| 15     |                  |          |                       |
| 16     | Anis Amri        | false    | non-US                |
| 17     | Logan Clarke     | false    | shot not killed       |
| 18     | Craig McDougall  | false    | non-US                |
| 19     |                  |          |                       |
| 20     | Benjamin Marconi | false    | name of officer       |

#### Outline

- 1. Motivation and overview
- 2. Task and data
- 3. Model
- 4. Training
- 5. Evaluation
- 6. Conclusion

## Goal: database update



# Sample Output

#### (1) Walter Scott

- A group prayer is held on April 12, 2015 at the site where Walter Scott was killed by a North Charleston police officer in North Charleston, South Carolina View photos A group prayer is held on April 12, 2015 at the site where Walter Scott was killed by a North Charleston police officer in North Charleston, South Carolina (AFP Photo/JOE RAEDLE) (BUTTON)
   dl date 2016-12-06 Doc 2173194\_36\_4 pred=0.998
- The shooting happened just months after Walter Scott, an unarmed black man, was killed by white police officer Michael Slager when he fled a traffic stop in North Charleston.
- dl date 2016-12-16 Doc 2203135\_323\_0 pred=0.991
- A man walks past the lot where Walter Scott was killed by a North Charleston police officer Saturday after a traffic stop in North Charleston, S.C., Thursday, April 9, 2015.
   dl date 2016-12-06 Doc 2172211\_194\_0 pred=0.99

#### (2) Keith Scott

- News of the jury 's failure to reach a verdict came just a few days after a prosecutor in Charlotte, N.C., announced no charges would be filed against a police officer in the September shooting of Keith Scott, an African American man whose death inspired violent protests in North Carolina.
   dl date 2016-12-02 Doc 2163436\_27\_0 pred=0.97
- Nation/World Keith Lamont Scott, pictured at right in a photo released by his family, was fatally shot by police in Charlotte, North Carolina on Sept. 20, 2016.

dl date 2016-12-02 Doc 2163074\_100\_0 pred=0.951

 People march in Charlotte, N.C., on Sept. 23 to protest the fatal police shooting of Keith Lamont Scott. dl date 2016-12-20 Doc 2213883\_298\_0 pred=0.947

#### (3) Alton Sterling

- Hundreds of miles away, protesters marched outside a convenience store in Baton Rouge, Louisiana, where Alton Sterling was fatally shot Tuesday while police tackled him in a parking lot.
   dl date 2016-12-29 Doc 2241447\_83\_0 pred=0.995
- [rtsh3xr.jpg?quality=80&strip=all&w=50] Ieshia L. Evans, a demonstrator protesting the shooting death of Alton Sterling is detained by law enforcement near the headquarters of the Baton Rouge Police Department in Baton Rouge, Louisiana, on July 9.
   dl date 2016-12-27 Doc 2234040\_59\_0 pred=0.995
- old Alton Sterling, a black man killed by white Baton Rouge officers after a confrontation at a convenience store.
   dl date 2016-12-27 Doc 2235302\_71\_0 pred=0.995

## **Future Work**

- Other model architectures (e.g. LSTMs)
- Other domains for database update problem
- Extract additional event information
- Build interactive interface for practitioners

## Contributions

- Distant supervision approach much cheaper
- Public data for the social good
- New NLP task, released data publicly
- Progress towards fully-automatic system

# Thanks!

#### Code and data:

http://slanglab.cs.umass.edu/PoliceKillingsExtraction/

#### Acknowledgements:

- Amazon Web Services (AWS) Cloud Credits for Research program.
- D. Brian Burghart for advice on police fatalities tracking