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Collecting data 

• Keyword-querying web scraper running 
throughout 2016

• Preprocessing: text extraction, deduplication,  
spaCy NER+parsing, name cleanups
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2013), fatalities are well defined. The task also
builds on a considerable information extraction lit-
erature on knowledge base population (e.g. Craven
et al. (1998)). Finally, the field of natural lan-
guage processing should, when possible, advance
applications of important public interest. Previous
work established the value of textual news for this
problem, but computational methods could allevi-
ate the scale of manual labor needed to use it.

To introduce this problem, we:

• Define the task of identifying persons killed
by police, which is an instance of cross-
document entity-event extraction (§3.1).

• Present a new dataset of web news articles
collected throughout 2016 that describe pos-
sible fatal encounters with police officers
(§3.2).

• Introduce, for the database update setting,
a distant supervision model (§4) that incor-
porates feature-based logistic regression and
convolutional neural network classifiers un-
der a latent disjunction model.

• Demonstrate our system’s usefulness for
practitioners: it outperforms two off-the-
shelf event extractors (§5) and finds 39 per-
sons not included in the Guardian’s “The
Counted” database of police fatalities (§6).

2 Related Work

This task combines elements of information ex-
traction, including: event extraction (a.k.a. seman-
tic parsing), identifying descriptions of events and
their arguments from text, and cross-document
relation extraction, predicting semantic relations
over entities. A fatality event indicates the killing
of a particular person; we wish to specifically
identify the names of fatality victims mentioned
in text. Thus our task could be viewed as unary
relation extraction: for a given person mentioned
in a corpus, were they killed by a police officer?

Prior work in NLP has produced a number
of event extraction systems, trained on text data
hand-labeled with a pre-specified ontology, in-
cluding ones that identify instances of killings (Li
and Ji, 2014; Das et al., 2014). Unfortunately, they
perform poorly on our task (§5), so we develop a
new method.

Since we do not have access to text specifically
annotated for police killing events, we instead turn

Knowledge base Historical Test
FE incident dates Jan 2000 –

Aug 2016
Sep 2016 –
Dec 2016

FE gold entities (G) 17,219 452
News dataset Train Test
doc. dates Jan 2016 –

Aug 2016
Sep 2016 –
Dec 2016

total docs. (D) 793,010 317,345
total ments. (M) 132,833 68,925
pos. ments. (M+) 11,274 6,132
total entities (E) 49,203 24,550
pos. entities (E+) 916 258

Table 2: Data statistics for Fatal Encounters (FE)
and scraped news documents. M and E re-
sult from NER processing, while E

+ results from
matching textual named entities against the gold-
standard database (G).

to distant supervision—inducing labels by align-
ing relation-entity entries from a gold standard
database to their mentions in a corpus (Craven and
Kumlien, 1999; Mintz et al., 2009; Bunescu and
Mooney, 2007; Riedel et al., 2010). Similar to this
work, Reschke et al. (2014) apply distant supervi-
sion to multi-slot, template-based event extraction
for airplane crashes; we focus on a simpler unary
extraction setting with joint learning of a proba-
bilistic model. Other related work in the cross-
document setting has examined joint inference for
relations, entities, and events (Yao et al., 2010; Lee
et al., 2012; Yang et al., 2015).

Finally, other natural language processing ef-
forts have sought to extract social behavioral
event databases from news, such as instances
of protests (Hanna, 2017), gun violence (Pavlick
et al., 2016), and international relations (Schrodt
and Gerner, 1994; Schrodt, 2012; Boschee et al.,
2013; O’Connor et al., 2013; Gerrish, 2013). They
can also be viewed as event database population
tasks, with differing levels of semantic specificity
in the definition of “event.”

3 Task and Data

3.1 Cross-document entity-event extraction
for police fatalties

From a corpus of documents D, the task is to ex-
tract a list of candidate person names, E , and for
each e 2 E find

P (ye = 1 | xM(e)). (1)

Here y 2 {0, 1} is the entity-level label where
ye = 1 means a person (entity) e was killed by
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Prior work in NLP has produced a number
of event extraction systems, trained on text data
hand-labeled with a pre-specified ontology, in-
cluding ones that identify instances of killings (Li
and Ji, 2014; Das et al., 2014). Unfortunately, they
perform poorly on our task (§5), so we develop a
new method.
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gistic model:

P (zi = 1 | xi) = �(�Tf�(xi)). (2)

We experiment with both logistic regression (§4.4)
and convolutional neural networks (§4.5) for this
component. Then we must somehow aggregate
mention-level decisions to determine entity labels
ye.8 If a human reader were to observe at least one
sentence that states a person was killed by police,
they would infer that person was killed by police.
Therefore we aggregate an entity’s mention-level
labels with a deterministic disjunction:

P (ye = 1 | zM(e)) = 1

�
_i2M(e) zi

 
. (3)

At test time, zi is latent. Therefore the correct
inference for an entity is to marginalize out the
model’s uncertainty over zi:

P (ye = 1|xM(e)) = 1� P (ye = 0|xM(e)) (4)

= 1� P (zM(e) =
~
0 | xM(e)) (5)

= 1�

Y

i2M(e)

(1� P (zi = 1 | xi)). (6)

Eq. 6 is the noisyor formula (Pearl, 1988; Craven
and Kumlien, 1999). Procedurally, it counts strong
probabilistic predictions as evidence, but can also
incorporate a large number of weaker signals as
positive evidence as well.9

In order to train these classifiers, we need
mention-level labels (zi) which we impute via
two different distant supervision labeling meth-
ods: “hard” and “soft.”

4.2 “Hard” distant label training
In “hard” distant labeling, labels for mentions in
the training data are heuristically imputed and di-
rectly used for training. We use two labeling rules.
First, name-only:

zi = 1 if 9e 2 G

(train)
: name(i) = name(e).

(7)

8An alternative approach is to aggregate features across
mentions into an entity-level feature vector (Mintz et al.,
2009; Riedel et al., 2010); but here we opt to directly model
at the mention level, which can use contextual information.

9In early experiments, we experimented with other, more
ad-hoc aggregation rules with a “hard”-trained model. The
maximum and arithmetic mean functions performed worse
than noisyor, giving credence to the disjunction model. The
sum rule (

P
i P (zi = 1 | xi)) had similar ranking perfor-

mance as noisyor—perhaps because it too can use weak sig-
nals, unlike mean or max—though it does not yield proper
probabilities between 0 and 1.

This is the direct unary predicate analogue of
Mintz et al. (2009)’s distant supervision assump-
tion, which assumes every mention of a gold-
positive entity exhibits a description of a police
killing.

This assumption is not correct. We manually
analyze a sample of positive mentions and find 36
out of 100 name-only sentences did not express a
police fatality event—for example, sentences con-
tain commentary, or describe killings not by po-
lice. This is similar to the precision for distant su-
pervision of binary relations found by Riedel et al.
(2010), who reported 10–38% of sentences did not
express the relation in question.

Our higher precision rule, name-and-location,
leverages the fact that the location of the fatality is
also in the Fatal Encounters database and requires
both to be present:

zi = 1 if 9e 2 G

(train)
:

name(i) = name(e) and location(e) 2 xi.
(8)

We use this rule for training since precision is
slightly better, although there is still a consider-
able level of noise.

4.3 “Soft” (EM) joint training
At training time, the distant supervision assump-
tion used in “hard” label training is flawed: many
positively-labeled mentions are in sentences that
do not assert the person was killed by a police of-
ficer. Alternatively, at training time we can treat
zi as a latent variable and assume, as our model
states, that at least one of the mentions asserts
the fatality event, but leave uncertainty over which
mention (or multiple mentions) conveys this in-
formation. This corresponds to multiple instance
learning (MIL; Dietterich et al. (1997)) which has
been applied to distantly supervised relation ex-
traction by enforcing the at least one constraint at
training time (Bunescu and Mooney, 2007; Riedel
et al., 2010; Hoffmann et al., 2011; Surdeanu et al.,
2012; Ritter et al., 2013). Our approach differs by
using exact marginal posterior inference for the E-
step.

4.3.1 EM training for the latent disjunction
model

With zi as latent, the model can be trained with
the EM algorithm (Dempster et al., 1977). We ini-
tialize the model by training on the “hard” distant
labels (§4.2), and then learn improved parameters
by alternating E- and M-steps.
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Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.
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necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.
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gistic model:

P (zi = 1 | xi) = �(�Tf�(xi)). (2)

We experiment with both logistic regression (§4.4)
and convolutional neural networks (§4.5) for this
component. Then we must somehow aggregate
mention-level decisions to determine entity labels
ye.8 If a human reader were to observe at least one
sentence that states a person was killed by police,
they would infer that person was killed by police.
Therefore we aggregate an entity’s mention-level
labels with a deterministic disjunction:

P (ye = 1 | zM(e)) = 1

�
_i2M(e) zi

 
. (3)

At test time, zi is latent. Therefore the correct
inference for an entity is to marginalize out the
model’s uncertainty over zi:

P (ye = 1|xM(e)) = 1� P (ye = 0|xM(e)) (4)

= 1� P (zM(e) =
~
0 | xM(e)) (5)

= 1�

Y

i2M(e)

(1� P (zi = 1 | xi)). (6)

Eq. 6 is the noisyor formula (Pearl, 1988; Craven
and Kumlien, 1999). Procedurally, it counts strong
probabilistic predictions as evidence, but can also
incorporate a large number of weaker signals as
positive evidence as well.9

In order to train these classifiers, we need
mention-level labels (zi) which we impute via
two different distant supervision labeling meth-
ods: “hard” and “soft.”

4.2 “Hard” distant label training
In “hard” distant labeling, labels for mentions in
the training data are heuristically imputed and di-
rectly used for training. We use two labeling rules.
First, name-only:

zi = 1 if 9e 2 G

(train)
: name(i) = name(e).

(7)

8An alternative approach is to aggregate features across
mentions into an entity-level feature vector (Mintz et al.,
2009; Riedel et al., 2010); but here we opt to directly model
at the mention level, which can use contextual information.

9In early experiments, we experimented with other, more
ad-hoc aggregation rules with a “hard”-trained model. The
maximum and arithmetic mean functions performed worse
than noisyor, giving credence to the disjunction model. The
sum rule (

P
i P (zi = 1 | xi)) had similar ranking perfor-

mance as noisyor—perhaps because it too can use weak sig-
nals, unlike mean or max—though it does not yield proper
probabilities between 0 and 1.

This is the direct unary predicate analogue of
Mintz et al. (2009)’s distant supervision assump-
tion, which assumes every mention of a gold-
positive entity exhibits a description of a police
killing.

This assumption is not correct. We manually
analyze a sample of positive mentions and find 36
out of 100 name-only sentences did not express a
police fatality event—for example, sentences con-
tain commentary, or describe killings not by po-
lice. This is similar to the precision for distant su-
pervision of binary relations found by Riedel et al.
(2010), who reported 10–38% of sentences did not
express the relation in question.

Our higher precision rule, name-and-location,
leverages the fact that the location of the fatality is
also in the Fatal Encounters database and requires
both to be present:

zi = 1 if 9e 2 G

(train)
:

name(i) = name(e) and location(e) 2 xi.
(8)

We use this rule for training since precision is
slightly better, although there is still a consider-
able level of noise.

4.3 “Soft” (EM) joint training
At training time, the distant supervision assump-
tion used in “hard” label training is flawed: many
positively-labeled mentions are in sentences that
do not assert the person was killed by a police of-
ficer. Alternatively, at training time we can treat
zi as a latent variable and assume, as our model
states, that at least one of the mentions asserts
the fatality event, but leave uncertainty over which
mention (or multiple mentions) conveys this in-
formation. This corresponds to multiple instance
learning (MIL; Dietterich et al. (1997)) which has
been applied to distantly supervised relation ex-
traction by enforcing the at least one constraint at
training time (Bunescu and Mooney, 2007; Riedel
et al., 2010; Hoffmann et al., 2011; Surdeanu et al.,
2012; Ritter et al., 2013). Our approach differs by
using exact marginal posterior inference for the E-
step.

4.3.1 EM training for the latent disjunction
model

With zi as latent, the model can be trained with
the EM algorithm (Dempster et al., 1977). We ini-
tialize the model by training on the “hard” distant
labels (§4.2), and then learn improved parameters
by alternating E- and M-steps.
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gistic model:

P (zi = 1 | xi) = �(�Tf�(xi)). (2)

We experiment with both logistic regression (§4.4)
and convolutional neural networks (§4.5) for this
component. Then we must somehow aggregate
mention-level decisions to determine entity labels
ye.8 If a human reader were to observe at least one
sentence that states a person was killed by police,
they would infer that person was killed by police.
Therefore we aggregate an entity’s mention-level
labels with a deterministic disjunction:

P (ye = 1 | zM(e)) = 1

�
_i2M(e) zi

 
. (3)

At test time, zi is latent. Therefore the correct
inference for an entity is to marginalize out the
model’s uncertainty over zi:

P (ye = 1|xM(e)) = 1� P (ye = 0|xM(e)) (4)

= 1� P (zM(e) =
~
0 | xM(e)) (5)

= 1�

Y

i2M(e)

(1� P (zi = 1 | xi)). (6)

Eq. 6 is the noisyor formula (Pearl, 1988; Craven
and Kumlien, 1999). Procedurally, it counts strong
probabilistic predictions as evidence, but can also
incorporate a large number of weaker signals as
positive evidence as well.9

In order to train these classifiers, we need
mention-level labels (zi) which we impute via
two different distant supervision labeling meth-
ods: “hard” and “soft.”

4.2 “Hard” distant label training
In “hard” distant labeling, labels for mentions in
the training data are heuristically imputed and di-
rectly used for training. We use two labeling rules.
First, name-only:

zi = 1 if 9e 2 G

(train)
: name(i) = name(e).

(7)

8An alternative approach is to aggregate features across
mentions into an entity-level feature vector (Mintz et al.,
2009; Riedel et al., 2010); but here we opt to directly model
at the mention level, which can use contextual information.

9In early experiments, we experimented with other, more
ad-hoc aggregation rules with a “hard”-trained model. The
maximum and arithmetic mean functions performed worse
than noisyor, giving credence to the disjunction model. The
sum rule (

P
i P (zi = 1 | xi)) had similar ranking perfor-

mance as noisyor—perhaps because it too can use weak sig-
nals, unlike mean or max—though it does not yield proper
probabilities between 0 and 1.

This is the direct unary predicate analogue of
Mintz et al. (2009)’s distant supervision assump-
tion, which assumes every mention of a gold-
positive entity exhibits a description of a police
killing.

This assumption is not correct. We manually
analyze a sample of positive mentions and find 36
out of 100 name-only sentences did not express a
police fatality event—for example, sentences con-
tain commentary, or describe killings not by po-
lice. This is similar to the precision for distant su-
pervision of binary relations found by Riedel et al.
(2010), who reported 10–38% of sentences did not
express the relation in question.

Our higher precision rule, name-and-location,
leverages the fact that the location of the fatality is
also in the Fatal Encounters database and requires
both to be present:

zi = 1 if 9e 2 G

(train)
:

name(i) = name(e) and location(e) 2 xi.
(8)

We use this rule for training since precision is
slightly better, although there is still a consider-
able level of noise.

4.3 “Soft” (EM) joint training
At training time, the distant supervision assump-
tion used in “hard” label training is flawed: many
positively-labeled mentions are in sentences that
do not assert the person was killed by a police of-
ficer. Alternatively, at training time we can treat
zi as a latent variable and assume, as our model
states, that at least one of the mentions asserts
the fatality event, but leave uncertainty over which
mention (or multiple mentions) conveys this in-
formation. This corresponds to multiple instance
learning (MIL; Dietterich et al. (1997)) which has
been applied to distantly supervised relation ex-
traction by enforcing the at least one constraint at
training time (Bunescu and Mooney, 2007; Riedel
et al., 2010; Hoffmann et al., 2011; Surdeanu et al.,
2012; Ritter et al., 2013). Our approach differs by
using exact marginal posterior inference for the E-
step.

4.3.1 EM training for the latent disjunction
model

With zi as latent, the model can be trained with
the EM algorithm (Dempster et al., 1977). We ini-
tialize the model by training on the “hard” distant
labels (§4.2), and then learn improved parameters
by alternating E- and M-steps.
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gistic model:

P (zi = 1 | xi) = �(�Tf�(xi)). (2)

We experiment with both logistic regression (§4.4)
and convolutional neural networks (§4.5) for this
component. Then we must somehow aggregate
mention-level decisions to determine entity labels
ye.8 If a human reader were to observe at least one
sentence that states a person was killed by police,
they would infer that person was killed by police.
Therefore we aggregate an entity’s mention-level
labels with a deterministic disjunction:

P (ye = 1 | zM(e)) = 1

�
_i2M(e) zi

 
. (3)

At test time, zi is latent. Therefore the correct
inference for an entity is to marginalize out the
model’s uncertainty over zi:

P (ye = 1|xM(e)) = 1� P (ye = 0|xM(e)) (4)

= 1� P (zM(e) =
~
0 | xM(e)) (5)

= 1�

Y

i2M(e)

(1� P (zi = 1 | xi)). (6)

Eq. 6 is the noisyor formula (Pearl, 1988; Craven
and Kumlien, 1999). Procedurally, it counts strong
probabilistic predictions as evidence, but can also
incorporate a large number of weaker signals as
positive evidence as well.9

In order to train these classifiers, we need
mention-level labels (zi) which we impute via
two different distant supervision labeling meth-
ods: “hard” and “soft.”

4.2 “Hard” distant label training
In “hard” distant labeling, labels for mentions in
the training data are heuristically imputed and di-
rectly used for training. We use two labeling rules.
First, name-only:

zi = 1 if 9e 2 G

(train)
: name(i) = name(e).

(7)

8An alternative approach is to aggregate features across
mentions into an entity-level feature vector (Mintz et al.,
2009; Riedel et al., 2010); but here we opt to directly model
at the mention level, which can use contextual information.

9In early experiments, we experimented with other, more
ad-hoc aggregation rules with a “hard”-trained model. The
maximum and arithmetic mean functions performed worse
than noisyor, giving credence to the disjunction model. The
sum rule (

P
i P (zi = 1 | xi)) had similar ranking perfor-

mance as noisyor—perhaps because it too can use weak sig-
nals, unlike mean or max—though it does not yield proper
probabilities between 0 and 1.

This is the direct unary predicate analogue of
Mintz et al. (2009)’s distant supervision assump-
tion, which assumes every mention of a gold-
positive entity exhibits a description of a police
killing.

This assumption is not correct. We manually
analyze a sample of positive mentions and find 36
out of 100 name-only sentences did not express a
police fatality event—for example, sentences con-
tain commentary, or describe killings not by po-
lice. This is similar to the precision for distant su-
pervision of binary relations found by Riedel et al.
(2010), who reported 10–38% of sentences did not
express the relation in question.

Our higher precision rule, name-and-location,
leverages the fact that the location of the fatality is
also in the Fatal Encounters database and requires
both to be present:

zi = 1 if 9e 2 G

(train)
:

name(i) = name(e) and location(e) 2 xi.
(8)

We use this rule for training since precision is
slightly better, although there is still a consider-
able level of noise.

4.3 “Soft” (EM) joint training
At training time, the distant supervision assump-
tion used in “hard” label training is flawed: many
positively-labeled mentions are in sentences that
do not assert the person was killed by a police of-
ficer. Alternatively, at training time we can treat
zi as a latent variable and assume, as our model
states, that at least one of the mentions asserts
the fatality event, but leave uncertainty over which
mention (or multiple mentions) conveys this in-
formation. This corresponds to multiple instance
learning (MIL; Dietterich et al. (1997)) which has
been applied to distantly supervised relation ex-
traction by enforcing the at least one constraint at
training time (Bunescu and Mooney, 2007; Riedel
et al., 2010; Hoffmann et al., 2011; Surdeanu et al.,
2012; Ritter et al., 2013). Our approach differs by
using exact marginal posterior inference for the E-
step.

4.3.1 EM training for the latent disjunction
model

With zi as latent, the model can be trained with
the EM algorithm (Dempster et al., 1977). We ini-
tialize the model by training on the “hard” distant
labels (§4.2), and then learn improved parameters
by alternating E- and M-steps.
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gistic model:

P (zi = 1 | xi) = �(�Tf�(xi)). (2)

We experiment with both logistic regression (§4.4)
and convolutional neural networks (§4.5) for this
component. Then we must somehow aggregate
mention-level decisions to determine entity labels
ye.8 If a human reader were to observe at least one
sentence that states a person was killed by police,
they would infer that person was killed by police.
Therefore we aggregate an entity’s mention-level
labels with a deterministic disjunction:

P (ye = 1 | zM(e)) = 1

�
_i2M(e) zi

 
. (3)

At test time, zi is latent. Therefore the correct
inference for an entity is to marginalize out the
model’s uncertainty over zi:

P (ye = 1|xM(e)) = 1� P (ye = 0|xM(e)) (4)

= 1� P (zM(e) =
~
0 | xM(e)) (5)

= 1�

Y

i2M(e)

(1� P (zi = 1 | xi)). (6)

Eq. 6 is the noisyor formula (Pearl, 1988; Craven
and Kumlien, 1999). Procedurally, it counts strong
probabilistic predictions as evidence, but can also
incorporate a large number of weaker signals as
positive evidence as well.9

In order to train these classifiers, we need
mention-level labels (zi) which we impute via
two different distant supervision labeling meth-
ods: “hard” and “soft.”

4.2 “Hard” distant label training
In “hard” distant labeling, labels for mentions in
the training data are heuristically imputed and di-
rectly used for training. We use two labeling rules.
First, name-only:

zi = 1 if 9e 2 G

(train)
: name(i) = name(e).

(7)

8An alternative approach is to aggregate features across
mentions into an entity-level feature vector (Mintz et al.,
2009; Riedel et al., 2010); but here we opt to directly model
at the mention level, which can use contextual information.

9In early experiments, we experimented with other, more
ad-hoc aggregation rules with a “hard”-trained model. The
maximum and arithmetic mean functions performed worse
than noisyor, giving credence to the disjunction model. The
sum rule (

P
i P (zi = 1 | xi)) had similar ranking perfor-

mance as noisyor—perhaps because it too can use weak sig-
nals, unlike mean or max—though it does not yield proper
probabilities between 0 and 1.

This is the direct unary predicate analogue of
Mintz et al. (2009)’s distant supervision assump-
tion, which assumes every mention of a gold-
positive entity exhibits a description of a police
killing.

This assumption is not correct. We manually
analyze a sample of positive mentions and find 36
out of 100 name-only sentences did not express a
police fatality event—for example, sentences con-
tain commentary, or describe killings not by po-
lice. This is similar to the precision for distant su-
pervision of binary relations found by Riedel et al.
(2010), who reported 10–38% of sentences did not
express the relation in question.

Our higher precision rule, name-and-location,
leverages the fact that the location of the fatality is
also in the Fatal Encounters database and requires
both to be present:

zi = 1 if 9e 2 G

(train)
:

name(i) = name(e) and location(e) 2 xi.
(8)

We use this rule for training since precision is
slightly better, although there is still a consider-
able level of noise.

4.3 “Soft” (EM) joint training
At training time, the distant supervision assump-
tion used in “hard” label training is flawed: many
positively-labeled mentions are in sentences that
do not assert the person was killed by a police of-
ficer. Alternatively, at training time we can treat
zi as a latent variable and assume, as our model
states, that at least one of the mentions asserts
the fatality event, but leave uncertainty over which
mention (or multiple mentions) conveys this in-
formation. This corresponds to multiple instance
learning (MIL; Dietterich et al. (1997)) which has
been applied to distantly supervised relation ex-
traction by enforcing the at least one constraint at
training time (Bunescu and Mooney, 2007; Riedel
et al., 2010; Hoffmann et al., 2011; Surdeanu et al.,
2012; Ritter et al., 2013). Our approach differs by
using exact marginal posterior inference for the E-
step.

4.3.1 EM training for the latent disjunction
model

With zi as latent, the model can be trained with
the EM algorithm (Dempster et al., 1977). We ini-
tialize the model by training on the “hard” distant
labels (§4.2), and then learn improved parameters
by alternating E- and M-steps.
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We use this rule for training since precision is
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able level of noise.
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At training time, the distant supervision assump-
tion used in “hard” label training is flawed: many
positively-labeled mentions are in sentences that
do not assert the person was killed by a police of-
ficer. Alternatively, at training time we can treat
zi as a latent variable and assume, as our model
states, that at least one of the mentions asserts
the fatality event, but leave uncertainty over which
mention (or multiple mentions) conveys this in-
formation. This corresponds to multiple instance
learning (MIL; Dietterich et al. (1997)) which has
been applied to distantly supervised relation ex-
traction by enforcing the at least one constraint at
training time (Bunescu and Mooney, 2007; Riedel
et al., 2010; Hoffmann et al., 2011; Surdeanu et al.,
2012; Ritter et al., 2013). Our approach differs by
using exact marginal posterior inference for the E-
step.

4.3.1 EM training for the latent disjunction
model

With zi as latent, the model can be trained with
the EM algorithm (Dempster et al., 1977). We ini-
tialize the model by training on the “hard” distant
labels (§4.2), and then learn improved parameters
by alternating E- and M-steps.
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At training time, the distant supervision assump-
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Model results

Figure 4: Precision-recall curves for the given
models.

Model AUPRC F1

hard-LR, dep. feats. 0.117 0.229
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notate a small corpus, and craft supervised learn-
ing systems to predict event parses of documents.

We evaluate two freely available, off-the-shelf
event extractors that were developed under this
paradigm: SEMAFOR (Das et al., 2014), and the
RPI Joint Information Extraction System (RPI-
JIE) (Li and Ji, 2014), which output semantic
structures following the FrameNet (Fillmore et al.,
2003) and ACE (Doddington et al., 2004) event
ontologies, respectively.14 Pavlick et al. (2016)
use RPI-JIE to identify instances of gun violence.

For each mention i 2 M we use SEMAFOR
and RPI-JIE to extract event tuples of the form
ti = (event type, agent, patient) from the sentence

14Many other annotated datasets encode similar event
structures in text, but with lighter ontologies where event
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et al., 2012; Oepen et al., 2014; Banarescu et al., 2013). We
assume such systems are too narrow for our purposes, since
we need an extraction system to handle different trigger con-
structions like “killed” versus “shot dead.”
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data using event extractors SEMAFOR and RPI-
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xi. We want the system to detect (1) killing events,
where (2) the killed person is the target mention i,
and (3) the person who killed them is a police of-
ficer. We implement a small progression of these
neo-Davidsonian (Parsons, 1990) conjuncts with
rules to classify zi = 1 if:15

• (R1) the event type is ‘kill.’

• (R2) R1 holds and the patient token span
contains ei.

• (R3) R2 holds and the agent token span con-
tains a police keyword.

As in §4.1, we aggregate mention-level zi predic-
tions to obtain entity-level predictions with a de-
terministic OR of zM(e).

RPI-JIE under the full R3 system performs best,
though all results are relatively poor (Table 6).
Part of this is due to inherent difficulty of the task,
though our task-specific model still outperforms
(Table 5). We suspect a major issue is that these
systems heavily rely on their annotated training
sets and may have significant performance loss on
new domains, or messy text extracted from web
news, suggesting domain transfer for future work.

6 Results and discussion

Usefulness for practitioners: Our results indicate
our model is better than existing methods to ex-
tract names of people killed by police. Comparing

15For SEMAFOR, we use the FrameNet ‘Killing’ frame
with frame elements ‘Victim’ and ‘Killer’. For RPI-JIE, we
use the ACE ‘life/die’ event type/subtype with roles ‘victim’
and ‘agent’. SEMAFOR defines a token span for every ar-
gument; RPI-JIE/ACE defines two spans, both a head word
and entity extent; we use the entity extent. SEMAFOR only
predicts spans as event arguments, while RPI-JIE also pre-
dicts entities as event arguments and gives each a within-text
coreference chain; since we only use single sentences, these
tend to be small, but it does sometimes resolve pronouns. For
determining R2 and R3, we allow a match on any of an en-
tity’s extents.
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ficer. We implement a small progression of these
neo-Davidsonian (Parsons, 1990) conjuncts with
rules to classify zi = 1 if:15

• (R1) the event type is ‘kill.’

• (R2) R1 holds and the patient token span
contains ei.

• (R3) R2 holds and the agent token span con-
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As in §4.1, we aggregate mention-level zi predic-
tions to obtain entity-level predictions with a de-
terministic OR of zM(e).

RPI-JIE under the full R3 system performs best,
though all results are relatively poor (Table 6).
Part of this is due to inherent difficulty of the task,
though our task-specific model still outperforms
(Table 5). We suspect a major issue is that these
systems heavily rely on their annotated training
sets and may have significant performance loss on
new domains, or messy text extracted from web
news, suggesting domain transfer for future work.

6 Results and discussion

Usefulness for practitioners: Our results indicate
our model is better than existing methods to ex-
tract names of people killed by police. Comparing

15For SEMAFOR, we use the FrameNet ‘Killing’ frame
with frame elements ‘Victim’ and ‘Killer’. For RPI-JIE, we
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coreference chain; since we only use single sentences, these
tend to be small, but it does sometimes resolve pronouns. For
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Goal: database update



Sample Output



• Other model architectures (e.g. LSTMs)
• Other domains for database update problem
• Extract additional event information 
• Build interactive interface for practitioners 

Future Work 



• Distant supervision approach much cheaper 
• Public data for the social good
• New NLP task, released data publicly 
• Progress towards fully-automatic system 

Contributions  
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